Canvas

When it comes to design software there were many options over the years, many being released with a lot of hype and others disappearing not long after they released. There are few which lasted long enough to not be gobbled up by big names such as Adobe. One of those is Canvas by Deneba Systems.

First released in 1987, it is still available over at Canvas GFX. It’s amazing it was never bought by one of the big names, Adobe, Corel, Aldus, etc and remained under Deneba Systems until 2003 when it was bought by ACD Systems, but kept the name Deneba Canvas for a time. The later versions were not popular to all, and Mac support was dropped, but the software continued. Awhile back I was looking through a few of my old ZIP disks and found some software my father used in the mid 1980’s. He had a copy of Canvas version 2 for Macintosh. At that time I was more interested in playing games on our family’s Macintosh 128k than using design software.

Over the years I have come across many Canvas documents. With each version released, changes were made to the file format used to store the drawings and artwork. There were many file format changes as well as the extensions used with each version. Some are easily identifiable and others have some confusing structures. Lets look into it.

VersionPlatformExtensionDescription
Canvas 1-3 & artWORKSMacintoshnoneno strong pattern
Canvas 3.5Mac & WindowsCVSSimilar to v1-3
Canvas 5Mac & WindowsCV5CANVAS5 string
Canvas 6-8Mac & WindowsCNVCANVAS6 string
Canvas 9-XMac & WindowsCVXSimilar to 6-8
Canvas DrawMacCVDDifferent than others
Canvas Image FileCVIDAD5PROX

The first three versions of Canvas were Macintosh only and in those early days there was no extension, just a Type / Creator indicating to the Finder how to open them. Deneba Systems used the Creator codes DAD2, DAD5, through DADX.

The first versions are quite frustrating. I have gathered samples from Version 2, 3, 3.5 and artWORKS version 1. Even with numerous samples, there are no patterns I can discern from them. I even reached out to the current CanvasX technical support for answers. They wanted to be helpful, but their answers didn’t offer much help.

With “CVS” or ‘drw2’ for mac, the header contains ranges inside a structure, and other data like if it was compressed. When we see if it’s a valid file we check the ranges. There is no easy way to determine what hex values would be written because of flipping, Intel vs (PPC or 68K). Unfortunately, the research needed to identify the Hex value will require the original code for version 3.5 which we do not have access to easily. Canvas 3.5 code is 16 bit… this would also be an issue.

Let’s take a look at a couple samples:

hexdump -C Canvas2.1-Sample | head
00000000  00 00 03 06 00 00 3d 9c  00 00 00 2a 00 00 00 0a  |......=....*....|
00000010  00 00 00 76 00 00 00 36  00 00 00 2e 00 00 00 1e  |...v...6........|
00000020  00 00 00 12 00 00 00 42  00 00 00 1a 00 00 00 82  |.......B........|
00000030  00 00 00 3c 00 66 00 01  00 00 3d 9c 00 48 00 00  |...<.f....=..H..|
00000040  40 02 90 00 00 00 00 00  00 00 00 00 00 00 00 00  |@...............|
00000050  00 01 00 00 01 00 00 00  00 20 00 40 00 60 00 80  |......... .@.`..|
00000060  00 c0 01 40 01 80 01 c0  02 40 02 80 00 00 00 00  |...@.....@......|
00000070  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 05  |................|
00000080  00 00 00 00 00 01 00 10  00 00 00 01 00 03 3f fc  |..............?.|
00000090  80 00 00 00 00 00 00 00  00 07 00 01 00 01 00 0b  |................|

hexdump -C Canvas2-s02 | head
00000000  00 00 03 b2 00 00 07 ec  00 00 00 2a 00 00 00 0a  |...........*....|
00000010  00 00 00 76 00 00 00 36  00 00 00 2e 00 00 00 1e  |...v...6........|
00000020  00 00 00 12 00 00 00 42  00 00 00 1a 00 00 00 82  |.......B........|
00000030  00 00 00 3c 00 66 00 01  00 00 07 ec 00 48 00 00  |...<.f.......H..|
00000040  40 02 90 00 00 00 00 00  00 00 00 00 00 00 00 00  |@...............|
00000050  00 01 01 00 01 00 00 00  00 20 00 40 00 60 00 80  |......... .@.`..|
00000060  00 c0 01 40 01 80 01 c0  02 40 02 80 00 00 00 00  |...@.....@......|
00000070  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 05  |................|
00000080  00 00 00 00 00 01 00 10  00 00 00 01 00 03 3f fc  |..............?.|
00000090  80 00 00 00 00 00 00 00  00 07 00 01 00 01 00 0b  |................|

hexdump -C Canvas3.04 | head
00000000  00 00 02 5a 00 00 00 1c  00 00 00 2a 00 00 00 0a  |...Z.......*....|
00000010  00 00 00 76 00 00 00 36  00 00 00 2e 00 00 00 1e  |...v...6........|
00000020  00 00 00 12 00 00 00 42  00 00 00 1a 00 00 00 82  |.......B........|
00000030  00 00 00 3c 00 68 00 02  00 00 00 1c 00 48 00 00  |...<.h.......H..|
00000040  40 02 90 00 00 00 00 00  00 00 00 00 00 00 00 00  |@...............|
00000050  00 01 01 00 01 03 00 00  00 20 00 40 00 60 00 80  |......... .@.`..|
00000060  00 c0 01 40 01 80 01 c0  02 40 02 80 00 00 00 00  |...@.....@......|
00000070  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000080  00 01 00 00 00 01 00 10  00 00 00 01 00 03 3f fc  |..............?.|
00000090  80 00 00 00 00 00 00 00  00 07 00 01 00 01 00 0b  |................|

hexdump -C Canvas5-3.5-Sample1.CVS | head
00000000  00 00 01 58 00 00 01 30  00 00 00 2a 00 00 00 00  |...X...0...*....|
00000010  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
*
00000030  00 00 00 00 00 69 00 02  00 00 01 30 00 48 00 00  |.....i.....0.H..|
00000040  40 02 90 00 00 00 00 00  00 00 00 00 00 00 00 00  |@...............|
00000050  00 01 01 01 00 00 00 00  00 20 00 40 00 60 00 80  |......... .@.`..|
00000060  00 c0 01 40 01 80 01 c0  02 40 02 80 00 00 00 00  |...@.....@......|
00000070  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000080  00 01 00 00 00 01 00 10  00 00 00 01 00 03 3f fc  |..............?.|
00000090  80 00 00 00 00 00 00 00  00 07 00 01 00 01 00 01  |................|

hexdump -C C3-5-S01.CVS | head
00000000  78 11 00 00 10 00 00 00  2a 00 00 00 0a 00 00 00  |x.......*.......|
00000010  26 00 00 00 26 00 00 00  26 00 00 00 26 00 00 00  |&...&...&...&...|
00000020  96 00 00 00 2a 00 00 00  2e 00 00 00 32 00 00 00  |....*.......2...|
00000030  00 00 00 00 01 6b 01 00  50 14 00 00 28 00 00 00  |.....k..P...(...|
00000040  6e 00 00 00 5b 00 00 00  01 00 04 00 00 00 00 00  |n...[...........|
00000050  e8 13 00 00 12 0b 00 00  12 0b 00 00 00 00 00 00  |................|
00000060  00 00 00 00 00 00 00 00  00 00 80 00 00 80 00 00  |................|
00000070  00 80 80 00 80 00 00 00  80 00 80 00 80 80 00 00  |................|
00000080  c0 c0 c0 00 80 80 80 00  00 00 ff 00 00 ff 00 00  |................|
00000090  00 ff ff 00 ff 00 00 00  ff 00 ff 00 ff ff 00 00  |................|

In the version 2 & 3 samples you can see some patterns, which I thought would allow for proper identification, but looking at more samples I found differences. One pattern I was hopeful might be consistent was the hex values “002000400060008000C00140018001C002400280”, but there are some which don’t match this pattern. If the file is truly compressed, it will be hard to know which values would be consistent among all files. I have over 8,000 samples and have a signature that only excludes around 20, so it will have to do for now.

When we start with Version 5 we get into some more identifiable headers, there is some oddness with some samples. But with an ascii string like “CANVAS5”, it should be easy, right? Not so fast, in version 5 you can compress the file structure. This removes the easily identifiable “CANVAS5” string. But some have a small string at the tail end, but others do not.

hexdump -C Canvas5-Sample1.CV5 | head
00000000  02 00 00 80 00 00 00 00  00 00 00 4e 96 00 00 4e  |...........N...N|
00000010  96 18 02 00 00 00 0e a8  da 43 41 4e 56 41 53 35  |.........CANVAS5|
00000020  00 01 00 00 00 00 00 05  03 00 00 00 00 00 00 00  |................|
00000030  00 00 00 00 00 21 00 00  00 21 00 00 00 79 00 00  |.....!...!...y..|
00000040  00 03 00 00 01 6b 00 00  00 03 00 00 00 01 ff ff  |.....k..........|
00000050  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................|

hexdump -C Canvas5-Sample3-cmp.CV5 | head
00000000  02 00 00 80 00 00 00 00  08 00 00 80 00 00 00 03  |................|
00000010  5c ff ff ff ff 00 00 40  22 00 00 03 50 10 00 89  |\......@"...P...|
00000020  07 60 bd 0f f0 00 00 10  03 04 10 56 00 20 05 00  |.`.........V. ..|
00000030  e0 18 02 10 35 04 30 4e  05 30 72 07 f0 a8 0d a1  |....5.0N.0r.....|
00000040  17 11 81 19 05 50 5c 00  60 0f 00 10 80 02 90 80  |.....P\.`.......|
00000050  03 f0 56 05 50 55 05 b0  75 12 51 29 05 e0 55 05  |..V.PU..u.Q)..U.|

hexdump -C Canvas5-Sample3-cmp.CV5 | tail
00001ff0  00 00 00 01 08 a5 ab c0  00 00 00 00 3f 89 2c 58  |............?.,X|
00002000  00 00 00 00 08 a5 ab 80  00 00 00 00 ff d4 11 e4  |................|
00002010  00 00 00 00 08 a5 ab 90  00 02 3e d8 ff d3 12 cc  |..........>.....|
00002020  00 00 00 00 00 00 00 00  00 02 3e d8 00 01 00 09  |..........>.....|
00002030  00 00 00 00 00 00 00 00  00 00 00 00 08 a5 ab f8  |................|
00002040  00 00 00 00 43 4e 56 35                           |....CNV5|

Canvas 6 uses a new extension, but has a similar structure to the file format. With compression as an option. But some of the compressed files on Windows has a reversed string, “5VNC“. So many Canvas 5 compressed look identical to Canvas 6 compressed, complicating identification.

hexdump -C Canvas6-Sample.CNV | head
00000000  01 00 80 00 00 90 07 cd  07 00 80 00 00 00 80 00  |................|
00000010  00 17 01 00 00 59 f5 0e  00 43 41 4e 56 41 53 36  |.....Y...CANVAS6|
00000020  00 01 00 00 00 00 06 00  00 00 00 00 00 00 00 00  |................|
00000030  00 00 00 00 00 21 7a 00  00 00 7a 00 00 00 03 00  |.....!z...z.....|
00000040  00 00 6e 01 00 00 03 00  00 00 01 00 00 00 ff ff  |..n.............|
00000050  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................|

hexdump -C Canvas6-Sample1-c.CNV | head
00000000  01 00 80 00 00 58 ea 2b  00 c2 1d 00 00 d0 09 00  |.....X.+........|
00000010  00 00 00 0f 2e 00 00 0b  07 00 00 09 c4 10 00 01  |................|
00000020  00 00 03 00 20 04 00 70  ff 00 80 05 00 c0 06 06  |.... ..p........|
00000030  50 20 03 00 0f 06 10 6b  00 a0 12 01 00 48 07 20  |P .....k.....H. |
00000040  6d 07 30 40 06 40 11 06  00 0b 05 00 10 00 10 71  |m.0@.@.........q|
00000050  01 40 21 00 00 59 01 00  0f 05 10 00 00 e1 14 00  |.@!..Y..........|

hexdump -C Canvas6-Sample1-c.CNV | tail
000016a0  00 00 00 12 f6 00 00 c0  f0 12 00 3c d0 80 7c 58  |...........<..|X|
000016b0  2f 14 00 00 00 00 00 bc  f4 8d 00 0f 00 00 00 00  |/...............|
000016c0  f1 12 00 7f 00 00 00 f8  2e 14 00 bc f4 8d 00 1c  |................|
000016d0  f2 12 00 04 f3 12 00 fc  d1 80 7c 09 04 00 00 00  |..........|.....|
000016e0  00 00 40 00 f2 12 00 ff  ff ff ff 00 f1 12 00 1c  |..@.............|
000016f0  f1 12 00 bc f4 8d 00 00  00 00 40 35 56 4e 43     |..........@5VNC|

While most have the “CANVAS6” string near the beginning, quite a few are missing the CNV5/5VNC string at the end. Instead, many have the string “%SI-0200” near the end, which I use in my signature suggestion. This structure remained the same from version 6 to 8.

hexdump -C Canvas8-S01.CNV | head
00000000  02 00 00 80 00 00 12 b8  80 00 00 11 19 00 00 11  |................|
00000010  19 18 02 00 00 00 0e f5  59 43 41 4e 56 41 53 36  |........YCANVAS6|
00000020  00 01 00 00 00 00 00 08  01 00 00 00 00 00 00 00  |................|
00000030  00 00 00 00 00 21 00 00  00 00 00 00 00 00 00 00  |.....!..........|
00000040  00 03 00 00 00 00 00 00  00 03 00 00 00 01 00 00  |................|
00000050  00 01 ff ff ff ff 00 00  00 02 00 00 00 02 00 00  |................|

But…….. There are plenty without these strings, just the “%SI-0200” near the end.

hexdump -C TELEGRPH.CNV | head
00000000  02 00 00 80 00 00 00 00  08 00 00 80 00 00 00 3d  |...............=|
00000010  f2 ff ff ff ff 00 00 75  76 00 00 3d e6 10 00 ff  |.......uv..=....|
00000020  00 00 b3 0d 90 a9 03 b0  8a 07 f0 98 07 60 80 08  |.............`..|
00000030  d0 35 01 c0 58 01 e0 59  04 80 b8 03 90 38 02 f0  |.5..X..Y.....8..|
00000040  e2 00 20 0b 03 70 1d 03  20 36 0f 30 00 01 80 09  |.. ..p.. 6.0....|

hexdump -C TELEGRPH.CNV | tail
00006850  2b 2c f9 ae 30 00 00 00  20 00 00 00 01 00 00 00  |+,..0... .......|
00006860  0f 00 00 00 10 00 00 00  1e 00 00 00 07 00 00 00  |................|
00006870  64 65 6e 65 62 61 00 00  00 00 01 4c 25 53 49 2d  |deneba.....L%SI-|
00006880  30 32 30 30 6d 61 63 00  00 00 00 00 00 00 00 00  |0200mac.........|
00006890  00 00 00 00                                       |....|

In version 9 and forward we have an extension change to CVX, but the format is similar with the “CANVAS6” string, but is a slightly different offset. It is still used with the current version of Canvas X.

hexdump -C Canvas9-Sample1.cvx | head
00000000  00 00 00 00 00 00 00 00  00 00 02 00 00 80 00 07  |................|
00000010  d1 84 d0 00 00 80 00 00  00 80 00 18 02 00 00 00  |................|
00000020  0f b7 ef 43 41 4e 56 41  53 36 00 01 00 00 00 00  |...CANVAS6......|
00000030  00 09 00 00 00 03 34 00  00 00 04 00 00 00 00 00  |......4.........|
00000040  00 00 00 3c 42 45 47 49  4e 5f 50 52 45 56 49 45  |...<BEGIN_PREVIE|
00000050  57 5f 54 41 47 3e 21 00  00 00 75 00 00 00 79 00  |W_TAG>!...u...y.|
00000060  00 00 03 00 00 01 6b 00  00 00 03 00 00 00 01 ff  |......k.........|
00000070  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................|

hexdump -C Canvas9-Sample1-compressed.cvx | tail
00004090  00 00 e0 20 00 57 80 00  00 00 00 00 0a 13 00 09  |... .W..........|
000040a0  00 00 04 00 00 00 00 01  00 00 00 00 bf ff e0 80  |................|
000040b0  bf ff e0 40 01 8c 5e 00  02 4a 22 d0 00 00 01 60  |...@..^..J"....`|
000040c0  bf ff e0 40 00 5c 08 18  00 00 00 00 00 0d 84 80  |...@.\..........|
000040d0  43 61 6e 76 61 73 39 2d  53 61 6d 70 6c 65 31 2d  |Canvas9-Sample1-|
000040e0  63 6f 6d 70 72 65 73 73  65 64 2e 63 76 78 00 18  |compressed.cvx..|
000040f0  bf ff e0 70 0a 12 6a a0  02 43 22 b4 00 0c aa 9c  |...p..j..C".....|
00004100  bf ff e0 80 00 00 00 01  00 00 00 00 00 0d 84 80  |................|
00004110  bf ff e0 b0 43 4e 56 35                           |....CNV5|

hexdump -C CanvasX2019-S01.cvx | head
00000000  00 00 00 00 00 00 00 00  00 00 01 00 80 00 00 00  |................|
00000010  6e ab 03 00 80 00 00 00  80 00 00 17 01 00 00 ef  |n...............|
00000020  b7 0f 00 43 41 4e 56 41  53 36 00 01 00 00 00 00  |...CANVAS6......|
00000030  09 00 00 4d 01 00 00 eb  4c 00 00 41 00 00 00 31  |...M....L..A...1|
00000040  52 45 56 03 00 00 00 01  00 00 00 00 00 00 00 00  |REV.............|
00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|

This collection of file formats is very hard to make sense of. Some really great consistent patterns on many samples, with lots of exceptions. Super confusing. This software has had a long run, with the latter years staying pretty stagnate in terms of new development. It is worth defining and creating a signature for the consistent patterns, then we can dial in the variants over time?

The signatures I have built miss about 23 files in versions 1-3 out of the ~9000 samples I have and for Canvas 5, only some of the compressed files are currently not identified. But so far all my CNV and CVX files identify correctly, so probably good for now.

CanvasX dropped supported for the Macintosh, but did release an entirely different product called Canvas X Draw, which does support the Macintosh. Here is what a CVD file looks like:

hexdump -C CanvasXDraw7-Sample1.cvd | head
00000000  25 43 61 6e 76 61 73 43  56 44 09 31 2e 30 25 bb  |%CanvasCVD.1.0%.|
00000010  54 48 65 61 64 65 72 00  00 00 00 00 00 00 00 00  |THeader.........|
00000020  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000030  00 bb 52 4d 61 63 4f 53  56 65 72 73 69 6f 6e 20  |..RMacOSVersion |
00000040  31 30 2e 31 33 2e 36 20  28 42 75 69 6c 64 20 31  |10.13.6 (Build 1|
00000050  37 47 31 34 30 34 32 29  31 30 2e 32 33 30 34 08  |7G14042)10.2304.|
00000060  00 00 00 70 6c 61 74 66  6f 72 6d 0a 73 00 00 00  |...platform.s...|
00000070  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000080  00 00 00 00 00 05 00 00  00 02 00 00 00 00 00 00  |................|
00000090  00 08 00 00 00 6f 73 0a  73 00 00 00 00 00 00 00  |.....os.s.......|

There is also the matter of a Canvas Image, which the User Guide calls proxy images. They are Raster images used in placements within Canvas Documents. Should be easy to identify.

hexdump -C Canvas5-Sample1.CVI | head
00000000  00 00 00 01 44 41 44 35  50 52 4f 58 00 00 09 99  |....DAD5PROX....|
00000010  00 00 00 11 00 00 00 2d  00 00 00 03 00 00 00 08  |.......-........|
00000020  00 48 00 00 00 00 00 06  00 03 00 08 00 00 00 11  |.H..............|
00000030  00 00 00 2d 00 03 00 03  00 48 00 00 00 48 00 00  |...-.....H...H..|
00000040  00 00 00 00 00 00 00 00  00 00 00 11 00 00 00 2d  |...............-|
00000050  00 00 00 02 00 00 00 08  00 00 00 01 00 00 00 11  |................|
00000060  00 00 00 2d ff ff ff ff  ff ff ff ff ff ff ff ff  |...-............|
00000070  ff ff ff ff ff ff ff ff  ff ff ff ff ff ff ff ff  |................|

Phew, if you held on for this whole post you must really like confusing file format structures. This format has been on my mind on and off for about 6 years. Hopefully these signatures will work for the vast majority of the Canvas files found in archives and personal systems. As always here is my GitHub with the signatures I am proposing and a few samples to get you confused.

MAGIX

There are probably many reasons why a software developer might want to create a proprietary format to store their files in. The software may require special features that don’t fit into an existing format. I would hope a developer would try to use existing formats, or even better open formats, but for many reasons, which probably include profits, they choose to re-invent the wheel often.

MAGIX is a German company which started making software in 1994. In 2001 they developed their first video editing software which was called Movie Edit Pro. The software seems to be well received and is still in use today.

Like most video editing software, project files are used to store all the edits and links to video files. These are usually smaller text based, with many using XML as the project format. Not MAGIX, they decided to go with a different yet known format for their project files.

hexdump -C MAGIX15-s01.MVP | head
00000000  52 49 46 46 6c 37 01 00  53 45 4b 44 4d 56 50 48  |RIFFl7..SEKDMVPH|
00000010  08 00 00 00 00 00 00 00  00 00 00 00 4c 49 53 54  |............LIST|
00000020  0c 16 01 00 4d 56 50 4c  4c 49 53 54 00 16 01 00  |....MVPLLIST....|
00000030  56 49 50 4c 53 56 49 50  0c 07 00 00 00 dc 05 00  |VIPLSVIP........|
00000040  00 00 00 00 20 00 00 00  0c 00 00 00 80 bb 00 00  |.... ...........|
00000050  10 00 00 00 29 6b 55 e2  53 f8 3d 40 00 00 f0 42  |....)kU.S.=@...B|
00000060  01 00 00 00 bd 04 ef fe  00 00 01 00 06 00 08 00  |................|
00000070  00 00 01 00 06 00 08 00  00 00 01 00 3f 00 00 00  |............?...|
00000080  28 00 00 00 04 00 04 00  01 00 00 00 00 00 00 00  |(...............|
00000090  00 00 00 00 00 00 00 00  bd 8f 32 01 d0 02 00 00  |..........2.....|

Yes, they used the RIFF container format for their projects. Seems an odd choice, especially for video production although it is well suited for it. AVI is another video format which uses the RIFF container. The MVP project file uses the ID SEKD with the format MVPH. Earlier versions of Movie Edit Pro used a different extension.

hexdump -C MAGIXv11-s01.MVD | head
00000000  52 49 46 46 38 57 00 00  53 45 4b 44 53 56 49 50  |RIFF8W..SEKDSVIP|
00000010  70 00 00 00 00 dc 05 00  00 00 00 00 04 00 00 00  |p...............|
00000020  02 00 00 00 80 bb 00 00  10 00 00 00 8e 23 d6 e2  |.............#..|
00000030  53 f8 3d 40 00 00 f0 42  01 00 00 00 bd 04 ef fe  |S.=@...B........|
00000040  00 00 01 00 00 00 06 00  00 00 04 00 00 00 06 00  |................|
00000050  00 00 04 00 3f 00 00 00  28 00 00 00 04 00 04 00  |....?...(.......|
00000060  01 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000070  c8 1b 32 01 d0 02 00 00  e0 01 00 00 52 d7 da fb  |..2.........R...|
00000080  54 55 f5 3f 4c 49 53 54  04 00 00 00 70 68 79 73  |TU.?LIST....phys|
00000090  4c 49 53 54 d0 3d 00 00  74 72 6b 73 4c 49 53 54  |LIST.=..trksLIST|

The MVD format used on an earlier version of Movie Edit Pro is also a RIFF, and with the ID of SEKD, but has a format of SVIP.

RIFFpad can break down the chunks we see in an MVP file. Each of the LIST chunks has their own subchunks as well. I assume this his how the editing software stores each video/audio track references, etc. So I give it to MAGIX for at least using an understandable format to store their projects.

MAGIX has also used RIFF in many of its supporting formats. So far I have found mfx, afx, ifx, cfx, ctf, tfx, ufx, mmt, mmm, hdp, each having their own format:

hexdump -C 101_Loud.mfx | head
00000000  52 49 46 46 a8 6f 00 00  53 45 4b 44 4d 41 46 58  |RIFF.o..SEKDMAFX|
00000010  00 00 00 00 4c 49 53 54  94 6f 00 00 41 55 46 58  |....LIST.o..AUFX|
00000020  4c 49 53 54 88 6f 00 00  41 46 58 45 46 58 48 44  |LIST.o..AFXEFXHD|
00000030  20 00 00 00 00 00 25 0d  00 00 00 00 02 00 00 00  | .....%.........|
00000040  01 00 00 00 00 00 00 00  03 18 00 00 00 00 00 00  |................|
00000050  00 00 00 00 4c 49 53 54  54 6f 00 00 41 46 58 44  |....LISTTo..AFXD|
00000060  4c 49 53 54 50 6a 00 00  41 46 58 45 46 58 48 44  |LISTPj..AFXEFXHD|
00000070  20 00 00 00 00 00 25 0d  00 00 00 00 05 00 00 00  | .....%.........|
00000080  01 00 00 00 00 00 00 00  03 18 00 00 00 00 00 00  |................|
00000090  00 00 00 00 4c 49 53 54  1c 6a 00 00 41 46 58 44  |....LIST.j..AFXD|

Not sure the best way to manage all of these in terms of identification, as I am not sure what what is the purpose of each format. Maybe for now I’ll make a generic to catch them all as a MAGIX File.

ExtensionIDFORMAT
AFXSEKDSAFX
CFXSEKDSCFX
CTFSEKDSVIP
HDPSEKDSHDP
IFXSEKDSIFX
MFXSEKDMAFX
MMMSEKDSVIP
MMTSEKDSVIP
MVDSEKDSVIP
MVPSEKDMVPH
MXMMXMDmxmi
TFXSEKDSTFX
UFXSEKDSVIP

But, when it comes to their proprietary MAGIX Video format, I think they may have pushed things a little too far. Meet the MXV format:

hexdump -C MAGIXv11-s01.mxv | head
00000000  4d 58 52 49 46 46 36 34  9a cb 2b 00 00 00 00 00  |MXRIFF64..+.....|
00000010  4d 58 4a 56 49 44 36 34  4d 58 4a 56 48 32 36 34  |MXJVID64MXJVH264|
00000020  70 00 00 00 00 00 00 00  70 00 00 00 03 00 00 00  |p.......p.......|
00000030  42 93 2b 00 00 00 00 00  f0 00 00 00 00 00 00 00  |B.+.............|
00000040  7b 2e 00 00 4b 00 00 00  01 00 00 00 00 00 00 00  |{...K...........|
00000050  8e 23 d6 e2 53 f8 3d 40  80 02 00 00 e0 01 00 00  |.#..S.=@........|
00000060  80 02 00 00 e0 01 00 00  04 00 00 00 43 15 00 00  |............C...|
00000070  f0 00 00 00 00 00 00 00  28 19 00 00 00 00 00 00  |........(.......|
00000080  55 55 55 55 55 55 f5 3f  00 00 00 00 00 00 00 00  |UUUUUU.?........|
00000090  7f dd 05 00 00 00 00 00  4d 58 4a 56 48 44 36 34  |........MXJVHD64|

I am not sure what I am looking at, is it a RIFF? Is it a RIFF variant like RF64? MAGIX claims the format is:

This is the MAGIX video format for quicker processing with MAGIX products. It offers very low loss of quality, but it cannot be played via conventional DVD players.

MAGIX Video Pro X6

A look around the internet doesn’t bring much up in reference to this format. Just my recent page on the format wiki. A search for MXRIFF64 bring up nothing. But a closer look at other strings within the MXV file reveal we are probably looking at some sort of MPEG format.

I was able to locate a project on GitHub which claims to be able to demux the MXV format. The software is written in GO and appears to indicate this format is chunked based and has most of the chunks figured out. So if you find yourself stuck with some MXV files and don’t want to use the latest from MAGIX, this might be the tool for you.

This demuxer also has an interesting file you can download. It is called a “GRAMMAR” file and can be loaded into hex viewers like Synalyze It! can show the parts of a file you load. Its a great way to explore a format!

None of these formats are found in PRONOM, project files are not usually kept in archives, but if would be good to know about the RIFF files if they do turn up. The video format is for sure something the archival world should know about. MediaInfo is currently not aware of this format, but seems like it might be an easy task.

As usual, you can see some samples and my proposal signatures on my GitHub.

Designer

Micrografx / Corel Designer

Many software titles we have all used began life under a different brand or even title. Larger software companies gobble up smaller developers, some brands merge, and others change names for whatever reason. Adobe has bought many smaller companies over the years, sometimes developing the acquired software and other times burying the software to avoid competition. Pagemaker was bought to give InDesign life, many Macromedia titles were incorporated or shelved. Such is life in the software world.

In understanding a file format, often times you need to follow this trail backwards to understand when file formats changed and compatibility is dropped. Often times the formats remained the same, but the extension is changed. Or the software name changes and formats are updated, but the extension remains the same. There can also be multiple titles which all use a common format, further complicating the identification of the formats.

Let’s look closer at the a title which changed names and file formats a few times over the years. Micrografx was founded in 1982 and were pretty well known for their innovation in computer graphics. They have released many titles over the years, but one of the first was In*A*Vision graphic software for Windows 1.0 in 1986. This software used a format with the .PIC extension. A couple years later version 2, was renamed to Micrografx Designer and used the .DRW extension. This extension was also used by Micrografx Draw, another similar program.

Micrografx Designer continued to be released until version 9 which is when it was purchased by Corel who continued to release new versions, although it is said the software was just a variation of CorelDraw, and now Designer is part of the CorelDraw Technical Suite. Other Micrografx software such as Picture Publisher was discontinued and customers were encouraged to use Corel’s PaintShop Pro instead. Somewhere in the middle of all this, Micrografx spun off a separate business unit called iGrafx, which Designer was marketed under for a short time.

Let’s break down the names, extensions used, and format type.

  • In*A*Vision & Draw, binary format, PIC extension
  • Micrografx Designer & Draw, binary format, DRW extension
  • Micrografx Designer version 4, RIFF format, DS4 & MGX extension
  • Micrografx Designer versions 6-9, OLE Container format, DSF extension
  • Micrografx/Corel Designer versions 10-12, RIFF format, DES extension
  • Corel Designer version X4-Current, ZIP/XML format, DES extension

According to the 2021 Corel DesignerUser Guide:

Corel DESIGNER (DES, DSF, DS4, or DRW)

You can import Corel DESIGNER files. Files from version 10 and later have the filename extension .des. Files from Micrografx versions 6 to 9 have the filename extension .dsf. Version 4 files have the filename extension .ds4. The .drw filename extension is used for a Micrografx 2.x or 3.x file. Micrografx template files (DST) are also supported.

The PRONOM registry has a few of these formats with signatures and documented, but not all, let’s see where the gaps are.

PUIDFormat NameFormat VersionExtension
x-fmt/151 Micrografx Designer dsf
x-fmt/296 Micrografx Designer 3.1drw
x-fmt/47 Micrografx Draw 1-2drw
x-fmt/294 Micrografx Draw 3drw
x-fmt/295 Micrografx Draw 4drw, drt
fmt/1907Micrografx Icon File icn
fmt/1481Micrografx In-A-Vision Drawingpic

So from the PRONOM list, it appears we have good identification on the original PIC and DRW formats. Then the Designer DSF OLE container is taken care of as well. That leaves us with DS4 and DES formats.

hexdump -C DS41-S01.DS4 | head
00000000  52 49 46 46 6e 07 00 00  4d 47 58 20 69 74 70 64  |RIFFn...MGX itpd|
00000010  04 00 00 00 00 02 00 80  70 72 6f 70 23 00 00 00  |........prop#...|
00000020  1f 00 00 30 02 00 00 00  08 00 2c 40 44 00 11 20  |...0......,@D.. |
00000030  20 00 01 10 80 e0 00 00  91 08 21 e0 5c 82 90 72  | .........!.\..r|
00000040  05 ff c0 00 4c 49 53 54  10 04 00 00 64 69 74 6e  |....LIST....ditn|
00000050  74 68 6e 6c 03 04 00 00  57 01 00 30 00 00 08 00  |thnl....W..0....|
00000060  08 00 00 41 04 00 01 20  a4 00 82 10 72 14 40 48  |...A... ....r.@H|
00000070  00 58 20 84 04 32 10 40  00 12 c8 98 18 22 63 90  |.X ..2.@....."c.|
00000080  2b 91 32 36 47 08 20 c0  23 e4 80 90 92 22 46 49  |+.26G. .#...."FI|
00000090  09 29 26 24 e4 a0 94 92  a2 56 4b 09 69 2e 25 e4  |.)&$.....VK.i.%.|

Micrografx Designer 4 apparently uses the RIFF container format. The RIFF format is used with many different types of formats. The most common is the WAV format. CorelDRAW also uses the RIFF format so it makes sense they would use it as they took over from Micrografx.

Each RIFF format has a four byte identifier type after the first eight bytes which identify the RIFF. The DS4 file uses the code “MGX ” to identify itself. Which also appears to be used with their clipart format, MGX. We can use the same identification method we use for other RIFF’s to identify this format.

hexdump -C Corel-DES10Sample.des | head
00000000  52 49 46 46 8a 57 00 00  44 45 53 41 76 72 73 6e  |RIFF.W..DESAvrsn|
00000010  02 00 00 00 7e 04 4c 49  53 54 54 0c 00 00 69 63  |....~.LISTT...ic|
00000020  63 70 69 63 63 64 48 0c  00 00 00 00 0c 48 4c 69  |cpiccdH......HLi|
00000030  6e 6f 02 10 00 00 6d 6e  74 72 52 47 42 20 58 59  |no....mntrRGB XY|
00000040  5a 20 07 ce 00 02 00 09  00 06 00 31 00 00 61 63  |Z .........1..ac|
00000050  73 70 4d 53 46 54 00 00  00 00 49 45 43 20 73 52  |spMSFT....IEC sR|
00000060  47 42 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |GB..............|
00000070  f6 d6 00 01 00 00 00 00  d3 2d 48 50 20 20 00 00  |.........-HP  ..|
00000080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|

Starting with version 10 of Corel Designer, the RIFF format is used again and has a different type. With Version 10 using “DESA”, then for version 10.5:

hexdump -C Corel-DES10.5Sample.des | head 
00000000  52 49 46 46 cc 57 00 00  44 45 53 42 76 72 73 6e  |RIFF.W..DESBvrsn|
00000010  02 00 00 00 b0 04 4c 49  53 54 54 0c 00 00 69 63  |......LISTT...ic|
00000020  63 70 69 63 63 64 48 0c  00 00 00 00 0c 48 4c 69  |cpiccdH......HLi|
00000030  6e 6f 02 10 00 00 6d 6e  74 72 52 47 42 20 58 59  |no....mntrRGB XY|
00000040  5a 20 07 ce 00 02 00 09  00 06 00 31 00 00 61 63  |Z .........1..ac|
00000050  73 70 4d 53 46 54 00 00  00 00 49 45 43 20 73 52  |spMSFT....IEC sR|
00000060  47 42 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |GB..............|
00000070  f6 d6 00 01 00 00 00 00  d3 2d 48 50 20 20 00 00  |.........-HP  ..|
00000080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|

The next version after 10.5 is version 12 and it shows a type:

hexdump -C Corel-DES12-Sample.des | head 
00000000  52 49 46 46 ce 57 00 00  44 45 53 43 76 72 73 6e  |RIFF.W..DESCvrsn|
00000010  02 00 00 00 e2 04 4c 49  53 54 54 0c 00 00 69 63  |......LISTT...ic|
00000020  63 70 69 63 63 64 48 0c  00 00 00 00 0c 48 4c 69  |cpiccdH......HLi|
00000030  6e 6f 02 10 00 00 6d 6e  74 72 52 47 42 20 58 59  |no....mntrRGB XY|
00000040  5a 20 07 ce 00 02 00 09  00 06 00 31 00 00 61 63  |Z .........1..ac|
00000050  73 70 4d 53 46 54 00 00  00 00 49 45 43 20 73 52  |spMSFT....IEC sR|
00000060  47 42 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |GB..............|
00000070  f6 d6 00 01 00 00 00 00  d3 2d 48 50 20 20 00 00  |.........-HP  ..|
00000080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|

After version 12, Corel started using numbering consistent with their other products. The first being X4.

hexdump -C Corel-DESX4-Sample.des | head
00000000  50 4b 03 04 14 00 00 08  00 00 f8 bb c9 4e c3 4b  |PK...........N.K|
00000010  9c d1 2d 00 00 00 2d 00  00 00 08 00 00 00 6d 69  |..-...-.......mi|
00000020  6d 65 74 79 70 65 61 70  70 6c 69 63 61 74 69 6f  |metypeapplicatio|
00000030  6e 2f 78 2d 76 6e 64 2e  63 6f 72 65 6c 2e 64 65  |n/x-vnd.corel.de|
00000040  73 69 67 6e 65 72 2e 64  6f 63 75 6d 65 6e 74 2b  |signer.document+|
00000050  7a 69 70 50 4b 03 04 14  00 00 08 00 00 f8 bb c9  |zipPK...........|
00000060  4e 6f 38 b6 64 98 13 00  00 98 13 00 00 14 00 00  |No8.d...........|
00000070  00 63 6f 6e 74 65 6e 74  2f 72 69 66 66 44 61 74  |.content/riffDat|
00000080  61 2e 63 64 72 52 49 46  46 90 13 00 00 44 45 53  |a.cdrRIFF....DES|
00000090  45 76 72 73 6e 02 00 00  00 82 05 4c 49 53 54 54  |Evrsn......LISTT|

Well it looks like things changed, starting with X4 the format changed to a ZIP container. Let’s take a peak inside.

Path = Corel-DESX4-Sample.des
Type = zip
Physical Size = 8714

   Date      Time    Attr         Size   Compressed  Name
------------------- ----- ------------ ------------  ------------------------
2019-06-09 22:31:47 .....           45           45  mimetype
2019-06-09 22:31:47 .....         5016         5016  content/riffData.cdr
2019-06-09 22:31:47 .....       196662          239  metadata/thumbnails/thumbnail.bmp
2019-06-09 22:31:47 .....       151606          698  metadata/thumbnails/page1.bmp
2019-06-09 22:31:47 .....          596          259  metadata/textinfo.xml
2019-06-09 22:31:47 .....         4977         1314  metadata/metadata.xml
2019-06-09 22:31:47 .....           53           55  links.xml
------------------- ----- ------------ ------------  ------------------------
2019-06-09 22:31:47             358955         7626  7 files

Looks like the container holds a RIFF inside along with some thumbnails, metadata, and other things. The mimetype file simple holds “application/x-vnd.corel.designer.document+zip”. The riffData.cdr however looks like this:

hexdump -C Corel-DESX4-Sample/content/riffData.cdr | head
00000000  52 49 46 46 90 13 00 00  44 45 53 45 76 72 73 6e  |RIFF....DESEvrsn|
00000010  02 00 00 00 82 05 4c 49  53 54 54 0c 00 00 69 63  |......LISTT...ic|
00000020  63 70 69 63 63 64 48 0c  00 00 00 00 0c 48 4c 69  |cpiccdH......HLi|
00000030  6e 6f 02 10 00 00 6d 6e  74 72 52 47 42 20 58 59  |no....mntrRGB XY|
00000040  5a 20 07 ce 00 02 00 09  00 06 00 31 00 00 61 63  |Z .........1..ac|
00000050  73 70 4d 53 46 54 00 00  00 00 49 45 43 20 73 52  |spMSFT....IEC sR|
00000060  47 42 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |GB..............|
00000070  f6 d6 00 01 00 00 00 00  d3 2d 48 50 20 20 00 00  |.........-HP  ..|
00000080  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|

Another RIFF, and seems to be in the same sequence, but going from version 12 to X4 we seemed to have skipped “DESD”. Maybe there was a developer version in between as they transitioned. Version X5 looks similar and has the RIFF sequence “DESF”. When we get to X6 the structure changes.

Path = Corel-DESX6-Sample.des
Type = zip
Physical Size = 8568

   Date      Time    Attr         Size   Compressed  Name
------------------- ----- ------------ ------------  ------------------------
2019-06-09 22:31:21 .....           45           45  mimetype
2019-06-09 22:31:21 .....        12153         1098  content/data/data1.dat
2019-06-09 22:31:21 .....          439          224  content/data/masterPage.dat
2019-06-09 22:31:21 .....          613          265  content/data/page1.dat
2019-06-09 22:31:21 .....           34           28  content/dataFileList.dat
2019-06-09 22:31:21 .....          960          279  content/root.dat
2019-06-09 22:31:21 .....       196662          239  metadata/thumbnails/thumbnail.bmp
2019-06-09 22:31:21 .....       151606          698  metadata/thumbnails/page1.bmp
2019-06-09 22:31:21 .....          427          208  color/color.xml
2019-06-09 22:31:21 .....          596          259  metadata/textinfo.xml
2019-06-09 22:31:21 .....          103          100  color/docPalette.xml
2019-06-09 22:31:21 .....        14920         1444  styles/document.cdss
2019-06-09 22:31:21 .....         5500         1462  metadata/metadata.xml
2019-06-09 22:31:21 .....           53           55  links.xml
------------------- ----- ------------ ------------  ------------------------
2019-06-09 22:31:21             384111         6404  14 files

The mimetype remains the same, but we see additional files within the structure. Also the riffData.cdr file is missing. Looking at each file we can see the root.dat file is a RIFF and follows the same sequence.

hexdump -C Corel-DESX6-Sample/content/root.dat | head
00000000  52 49 46 46 b8 03 00 00  44 45 53 47 66 76 65 72  |RIFF....DESGfver|
00000010  10 00 00 00 ff ff ff ff  08 00 00 00 5e 06 02 00  |............^...|
00000020  00 00 10 00 76 72 73 6e  10 00 00 00 ff ff ff ff  |....vrsn........|
00000030  02 00 00 00 5e 06 00 00  00 00 00 00 4c 49 53 54  |....^.......LIST|
00000040  7c 00 00 00 64 6f 63 20  6d 63 66 67 10 00 00 00  ||...doc mcfg....|
00000050  00 00 00 00 83 20 00 00  00 00 00 00 00 00 00 00  |..... ..........|
00000060  70 72 65 66 10 00 00 00  00 00 00 00 e6 0e 00 00  |pref............|
00000070  83 20 00 00 00 00 00 00  70 74 72 74 10 00 00 00  |. ......ptrt....|
00000080  00 00 00 00 10 00 00 00  69 2f 00 00 00 00 00 00  |........i/......|
00000090  4c 49 53 54 04 00 00 00  66 69 6c 74 4c 49 53 54  |LIST....filtLIST|

As we get to a more recent version. We can see the pattern continues.

hexdump -C Designer2022-s01/content/root.dat | head
00000000  52 49 46 46 88 06 00 00  44 45 53 4e 66 76 65 72  |RIFF....DESNfver|
00000010  10 00 00 00 ff ff ff ff  08 00 00 00 60 09 02 00  |............`...|
00000020  00 00 18 00 76 72 73 6e  10 00 00 00 ff ff ff ff  |....vrsn........|
00000030  02 00 00 00 60 09 00 00  00 00 00 00 4c 49 53 54  |....`.......LIST|
00000040  30 01 00 00 64 6f 63 20  6d 63 66 67 10 00 00 00  |0...doc mcfg....|
00000050  00 00 00 00 08 1f 00 00  00 00 00 00 00 00 00 00  |................|
00000060  70 72 65 66 10 00 00 00  00 00 00 00 ae 07 00 00  |pref............|
00000070  08 1f 00 00 00 00 00 00  70 74 72 74 10 00 00 00  |........ptrt....|
00000080  00 00 00 00 10 00 00 00  b6 26 00 00 00 00 00 00  |.........&......|
00000090  4c 49 53 54 4c 00 00 00  66 6e 74 74 66 6f 6e 74  |LISTL...fnttfont|

The last sample I have is for Corel Designer 2022, but there could be more. I created new signatures for all the samples I have, you can see them in my Github as usual. I decided to group some of the versions together to simplify things a bit, but if anyone thinks they should be broken out into individual versions, let me know.

Writing Center

In honor of #Marchintosh, I threatened in an earlier post to discuss The Writing Center, one of the many writing programs marketed by the Learning Company for the Mac. This one was developed by Datapak Software, Inc and I think they wanted to watch the world burn.

This format was different enough from the Student Writing Center and the “Ultimate Writing & Creativity Center” to need its own post. Moreover, I am pretty sure the developers of this software were actively trying to frustrate anyone trying to document the format. Let me explain.

In the early Macintosh world, very rarely were extensions used. Current systems use extensions to link the file to an application which can open the file. On the Mac, the system would use special attributes called Type / Creator codes. These codes were registered with Apple so they would be unique to a specific software and type of file. The codes used the FourCC system and unfortunately Apple never released a full list of codes used. Some folks over the years have tried to document as many as they can. Many used simple understandable codes, for example, A Microsoft Word document has a Type / Creator of W6BN / MSWD. The creator code of MSWD is very readable, and the type code W6BN is unique to a document from version 6 of Microsoft Word.

This Sample Report file from The Writing Center, when investigated with the ResEdit tool show interesting Type / Creator codes. If we look at the hexadecimals values for the codes. The first four bytes are the Type code and the second set of 4 bytes are the Creator code.

xattr -p com.apple.FinderInfo "Sample Report" 
0000   0A 57 50 31 0A 1A 57 50 01 00 00 00 00 00 00 00    .WP1..WP........

getfileinfo "Sample Report" 
file: "Sample Report"
type: "\nWP1"
creator: "\n\^ZWP"
attributes: avbstclInmedz
created: 10/13/1990 00:10:54
modified: 07/25/1991 11:58:20

The first thing to know is the encoding for all Type / Creator codes is MacRoman, so if we look up the hexadecimal code for “0A” we learn it is the character for a new Line Feed, why in the world would you use the line feed character? The developers must have had a sense of humor, or are psychopaths, and I’m leaning toward the latter. Trying to put this character into any sort of spreadsheet or text based document with other codes throws everything off! When I try and use a spreadsheet with a group of codes and then use a script to look them up on the command line I get crazy formatting. Not to mentioned the second character in the creator code is “1A” which is a substitute character.

This is just one example of crazy characters being used in Type / Creator codes. Stay tuned for more on these in future discussions.

Even though the Type / Creator codes are very useful in identification of this format, often times the Finder attribute is lost. This can happen if the file is moved off an HFS disk, usually a network or through the internet. Then all we have is the binary data fork and a file with no extension. So finding a signature to identify this format is useful.

hexdump -C "Sample Report" | head
00000000  00 12 cf fc 00 00 05 78  00 00 00 00 01 18 01 eb  |.......x........|
00000010  ff ff ff c4 ff ff ff c4  00 00 02 82 00 00 02 28  |...............(|
00000020  00 00 00 00 00 00 00 00  00 00 05 76 00 00 00 30  |...........v...0|
00000030  00 00 02 70 00 aa 00 00  05 76 00 00 00 30 00 00  |...p.....v...0..|
00000040  02 70 00 aa 00 00 00 00  00 00 00 00 00 00 00 00  |.p..............|
00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000060  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 12  |................|
00000070  d1 2c 00 00 05 3f 00 00  00 00 01 00 06 47 65 6e  |.,...?.......Gen|
00000080  65 76 61 00 00 00 00 00  00 00 00 00 00 00 00 00  |eva.............|
00000090  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 0c  |................|

hexdump -C WC-s01 | head        
00000000  03 df cd 9c 00 00 00 09  00 00 00 00 02 c3 02 64  |...............d|
00000010  00 00 00 00 00 00 00 00  00 00 00 59 00 00 02 64  |...........Y...d|
00000020  00 00 00 00 00 00 00 00  00 00 00 07 00 00 00 00  |................|
00000030  00 00 00 00 00 79 00 00  00 07 00 00 00 00 00 00  |.....y..........|
00000040  00 00 00 79 00 00 00 00  00 00 00 00 00 00 00 00  |...y............|
00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000060  00 00 00 00 00 00 00 00  00 00 00 00 00 00 03 df  |................|
00000070  cd 78 00 00 00 00 00 00  00 00 01 00 06 47 65 6e  |.x...........Gen|
00000080  65 76 61 00 00 00 00 00  00 00 00 00 00 00 00 00  |eva.............|
00000090  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 0c  |................|

Looking at the hexadecimal values of the header of a couple samples doesn’t initially look promising, the first few bytes are very different meaning there is no magic bytes at the beginning of the file. In fact the only thing the same is the mention of the Geneva font used in the document. Looking further into the files.

hexdump -C "Sample Report"       
00000000  00 12 cf fc 00 00 05 78  00 00 00 00 01 18 01 eb  |.......x........|
...
000000b0  00 00 00 00 00 00 00 02  84 28 ff ff 00 00 00 00  |.........(......|
000000c0  00 17 4e 26 00 12 d2 fc  00 00 00 00 00 12 d0 88  |..N&............|

hexdump -C WC-s01        
00000000  03 df cd 9c 00 00 00 09  00 00 00 00 02 c3 02 64  |...............d|
...
000000b0  00 00 00 00 00 00 00 02  84 28 ff ff 00 00 00 00  |.........(......|
000000c0  03 e3 a5 70 03 df cd 8c  00 00 00 00 03 df cd 64  |...p...........d|

hexdump -C Stationery 
00000000  00 12 d2 e8 00 00 00 02  00 00 00 00 01 17 01 ec  |................|
...
000000b0  00 00 00 00 00 00 00 02  84 20 ff ff 00 00 00 00  |......... ......|
000000c0  00 17 56 f8 00 12 cd f8  00 00 00 00 00 12 ce 40  |..V............@|

The only bytes I could find near the beginning that seemed semi consistent is the highlighted bytes above. I did however notice some consistent bytes at the end of each of the files.

hexdump -C "Sample Report" | tail                                                      
00007250  e5 00 02 e5 00 02 e5 00  02 e5 00 02 e5 00 02 e5  |................|
00007260  00 02 e5 00 02 e5 00 02  e5 00 02 e5 00 ff 00 07  |................|
00007270  00 00 00 05 04 31 2e 30  30 00 09 00 00 00 05 04  |.....1.00.......|
00007280  31 2e 30 30 00 08 00 00  00 05 04 31 2e 30 30 00  |1.00.......1.00.|
00007290  0a 00 00 00 05 04 31 2e  30 30 00 0b 00 00 00 02  |......1.00......|
000072a0  00 00 00 0c 00 00 00 10  00 00 00 00 00 00 00 00  |................|
000072b0  00 00 00 01 00 00 00 01  00 11 00 00 00 08 00 2b  |...............+|
000072c0  00 03 01 52 01 fd 00 13  00 00 00 02 00 00 7f ff  |...R............|
000072d0  00 00 00 00 00 00 72 dc  7f ff ff ff              |......r.....|

hexdump -C WC-s01 | tail                                                              
000003c0  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
000003d0  01 00 00 80 0c 00 08 00  05 00 00 00 00 01 d2 03  |................|
000003e0  ee dc 3e 00 00 00 00 00  07 00 00 00 01 00 00 09  |..>.............|
000003f0  00 00 00 01 00 00 08 00  00 00 01 00 00 0a 00 00  |................|
00000400  00 01 00 00 0b 00 00 00  02 00 00 00 0c 00 00 00  |................|
00000410  10 00 00 00 00 00 00 00  00 00 00 00 01 00 00 00  |................|
00000420  01 00 11 00 00 00 08 00  2b 00 c7 02 fd 03 3a 00  |........+.....:.|
00000430  13 00 00 00 02 00 00 7f  ff 00 00 00 00 00 00 04  |................|
00000440  45 7f ff ff ff                                    |E....|

hexdump -C Stationery | tail
000039a0  00 02 e3 00 02 e3 00 02  e3 00 02 e3 00 02 e3 00  |................|
000039b0  02 e3 00 02 e3 00 02 e3  00 02 e3 00 02 e3 00 ff  |................|
000039c0  00 07 00 00 00 05 04 31  2e 30 30 00 09 00 00 00  |.......1.00.....|
000039d0  05 04 31 2e 30 30 00 08  00 00 00 05 04 31 2e 30  |..1.00.......1.0|
000039e0  30 00 0a 00 00 00 05 04  31 2e 30 30 00 0b 00 00  |0.......1.00....|
000039f0  00 02 00 00 00 0c 00 00  00 10 00 00 00 00 00 00  |................|
00003a00  00 00 00 00 00 01 00 00  00 01 00 11 00 00 00 08  |................|
00003a10  00 2b 00 03 01 51 01 fe  00 13 00 00 00 02 00 00  |.+...Q..........|
00003a20  7f ff 00 00 00 00 00 00  3a 2e 7f ff ff ff        |........:.....|

The four bytes at the end of each file by themselves would not be a good signature as there are many formats which end with a few “FF” sequences. But maybe combined with bytes near the beginning, a signature might be found. I added a couple samples to my Github page if you would like to take a look. In order to retain the extended attributes, I encoded the files as MacBinary.

lsar -L "Sample Report.bin"
Sample Report.bin: MacBinary
Sample Report: 
  Name:                    Sample Report
  Size:                    29.4 KB (29,404 bytes)
  Compressed size:         29.4 KB (29,440 bytes)
  Last modified:           Thursday, July 25, 1991 at 12:58:20 PM
  Created:                 Saturday, October 13, 1990 at 1:10:54 AM
  Mac OS type code:        ?WP1 (0x0a575031)
  Mac OS creator code:     ??WP (0x0a1a5750)
  Mac OS Finder flags:     0x0100
  Index in file:           0
  Length of embedded data: 29404
  Start of embedded data:  128
  Original archive entry:  Is an embedded MacBinary file: Yes

Melco

I came across another CD-ROM the other day with some fun embroidery formats. It includes the HUS format I recently posted on, plus a few more.

Like I mentioned before, this is a format genre which is not normally seen in the archival world, but is fun to take a peek into the world of embroidery formats. The HUS format from Husqvarna was a unique proprietary format, but looking at another in this set, we see a common container format.

filename : 'CH1604.ofm'
filesize : 25600
modified : 2002-04-29T05:58:26-06:00
errors   : 
matches  :
  - ns      : 'pronom'
    id      : 'fmt/111'
    format  : 'OLE2 Compound Document Format'
    version : 
    mime    : 
    class   : 'Text (Structured)'
    basis   : 'byte match at 0, 30'

First, what is an OFM file? It is the native format for Melco branded embroidery machines. They have been around for a few years. Melco has been around since 1972, but i’m sure the format is much newer. The fact that it is in an OLE container would indicate it was created in the mid 1990’s.

Looking inside the OLE container:

Path = CH1604.ofm
Type = Compound
Physical Size = 25600
Extension = compound
Cluster Size = 512
Sector Size = 64

   Date      Time    Attr         Size   Compressed  Name
------------------- ----- ------------ ------------  ------------------------
                    .....        19171        19456  EdsIV Object
                    .....         2502         2560  Design Icon
                    .....          130          192  Design Status
------------------- ----- ------------ ------------  ------------------------
                                 21803        22208  3 files

The EdsIV Object seems specific. Looking back at the web archive it looks like EDS IV was software available for the Melco products. In a user manual there are three formats associated with the software:

  • .CND – Condensed Format
  • .EXP – Expanded Format
  • .OFM – Project (Layout format)

The EdsIV Object file is unique and will work well for identification. There also seems to be some common patterns within the file that can further the correct identification.

hexdump -C EdsIV Object | head
00000000  03 00 00 00 03 00 00 00  00 00 00 00 00 00 ff ff  |................|
00000010  0b 00 0c 00 43 50 72 6a  44 65 66 61 75 6c 74 73  |....CPrjDefaults|
00000020  05 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000030  00 00 00 00 00 00 f0 3f  28 00 00 00 01 00 00 00  |.......?(.......|
00000040  7f 00 00 00 00 00 00 00  00 00 39 40 00 00 00 00  |..........9@....|
00000050  00 00 10 40 00 00 00 00  00 00 00 00 00 00 00 00  |...@............|
00000060  00 00 00 00 00 00 00 00  00 00 59 40 04 00 00 00  |..........Y@....|
00000070  00 00 00 00 00 00 00 00  00 00 00 00 00 80 51 40  |..............Q@|
00000080  00 00 00 00 00 00 3e 40  00 00 00 00 00 00 2e 40  |......>@.......@|
00000090  00 00 00 00 00 80 56 40  00 00 00 00 00 80 51 40  |......V@......Q@|

The CND and EXP formats are a different matter. I ran Tridscan across all the CND samples and it could not detect one common pattern among them all.

python tridscan.py *.csd

TrIDScan/Py v2.02 - (C) 2015-2016 By M.Pontello

File(s) to scan found: 60
Scanning for patterns...
Checking file 1/60 './Cf0103.csd'
Checking file 2/60 './Cr0005.csd'
  Pattern(s) found: 11
Checking file 3/60 './Fd0106.csd'
tridscan.py: Error: no patterns found!

Being a condensed format, I gather it might have some compression which makes for a difficult binary file to identify.

The EXP format on the other hand has a short pattern at the beginning:

hexdump -C CF0103.EXP | head
00000000  80 02 00 00 80 02 18 e7  80 02 19 e6 80 02 19 e6  |................|
00000010  80 02 19 e7 80 02 19 e6  80 02 19 e6 80 02 19 e6  |................|
00000020  80 02 19 e7 80 02 19 e6  80 02 19 e6 80 02 18 e7  |................|
00000030  00 00 fc 00 04 00 fc 00  04 ff fc 01 ed 00 ec 00  |................|
00000040  21 21 df de da 01 15 14  15 15 15 15 eb eb eb eb  |!!..............|
00000050  eb eb da 00 17 17 17 17  17 18 17 17 ea e9 e9 e9  |................|
00000060  e9 e8 e9 e9 ed 00 ec 00  18 18 19 19 18 19 19 19  |................|
00000070  18 18 e8 e8 e8 e7 e7 e7  e8 e7 e8 e8 fa 01 20 00  |.............. .|
00000080  21 00 20 01 21 00 20 00  f8 1e f7 1e f7 1f f7 1e  |!. .!. .........|
00000090  da 00 e6 e5 e5 e5 e5 e4  e5 e5 1a 1b 1b 1b 1b 1c  |................|

Currently Melco distributes a different software for use with their embroidery machines. Their DesignShop software also works with the OFM format. Downloading a copy of version 11 and using the trial version I get access to a few OFM sample files. Let’s see if they are the same.

hexdump -C BUBBLEBOY1.ofm | head
00000000  52 49 46 46 86 e5 01 00  4f 46 4d 38 76 72 73 6e  |RIFF....OFM8vrsn|
00000010  08 00 00 00 39 00 2e 00  30 00 30 00 6e 6f 74 65  |....9...0.0.note|
00000020  a8 00 00 00 ff fe ff 52  44 00 69 00 67 00 69 00  |.......RD.i.g.i.|
00000030  74 00 69 00 7a 00 65 00  72 00 20 00 3a 00 20 00  |t.i.z.e.r. .:. .|
00000040  41 00 45 00 30 00 38 00  33 00 0d 00 0a 00 46 00  |A.E.0.8.3.....F.|
00000050  61 00 62 00 72 00 69 00  63 00 20 00 3a 00 20 00  |a.b.r.i.c. .:. .|
00000060  54 00 77 00 69 00 6c 00  6c 00 20 00 0d 00 0a 00  |T.w.i.l.l. .....|
00000070  4d 00 45 00 4c 00 43 00  4f 00 20 00 2d 00 20 00  |M.E.L.C.O. .-. .|
00000080  41 00 43 00 54 00 49 00  4f 00 4e 00 20 00 49 00  |A.C.T.I.O.N. .I.|
00000090  4c 00 4c 00 55 00 53 00  54 00 52 00 41 00 54 00  |L.L.U.S.T.R.A.T.|

Well that is very different than the earlier example. We can see right away this is a different type of file, in fact the first few bytes tells us this another container format. The Resource Interchange File Format, is used in many various file formats, the most popular are WAVE, AVI, and CorelDRAW. It is a chunk based format and there are a few tools we can use to look closer.

Riffpad can open the file, but claims there is some extra data at the end. It does see four chunks and it gives us the code “OFM8”, which is what identifies this particular RIFF type.

I was also able to get some samples of version 10 of DesignShop and found they are the same OLE container. Also has the same “EdsIV Object” within the container. There is a small paragraph in the EdsIV user manual that indicates there are some versioning within the OFM format.

If you open an EDS III .OFM file and save it, it will be converted into an EDS IV .OFM file, which is no longer readable in EDS III.
Files saved in this version of EDS IV cannot be read by previous versions of EDS IV.

This version of EDS IV is capable of producing two types of OFM files. Files saved as “Melco Project File (.ofm)” can only be read with this version or higher versions of EDS IV. Files saved as “Melco Version 2.00 (.ofm)” can be read by any EDS IV user that has version 2.00.006 or higher software.

It never ceases to amaze me how many formats use the Compound Object Container format. Seems like more and more are documented often. For now, I made a signature to identify the OLE and RIFF version of OFM. I’ll keep my eye out for the older EDS III and other related formats. As always, you can find my signatures and a sample file on my GitHub.